Dynamic contrast in scanning microscopic OCT

Posted on 03/01/2020 in Preprint

Michael Münter, Malte vom Endt, Mario Pieper, Malte Casper, Martin Ahrens, Tabea Kohlfaerber, Ramtin Rahmanzadeh, Peter König, Gereon Hüttmann, Hinnerk Schulz-Hildebrandt: Dynamic contrast in scanning microscopic OCT. ARXIV:Preprint, 2020.

Abstract

While optical coherence tomography (OCT) provides a resolution down to 1 μm it has difficulties to visualize cellular structures due to a lack of scattering contrast. By evaluating signal fluctuations, a significant contrast enhancement was demonstrated using time-domain full-field OCT (FF-OCT), which makes cellular and subcellular structures visible. The putative cause of the dynamic OCT signal is ATP-dependent motion of cellular structures in a sub- micrometer range, which provides histology-like contrast. Here we demonstrate dynamic contrast with a scanning frequency-domain OCT (FD-OCT). Given the inherent sectional imaging geometry, scanning FD-OCT provides depth-resolved images across tissue layers, a perspective known from histopathology, much faster and more efficiently than FF-OCT. Both, shorter acquisition times and tomographic depth-sectioning reduce the sensitivity of dynamic contrast for bulk tissue motion artifacts and simplify their correction in post-processing. The implementation of dynamic contrast makes microscopic FD-OCT a promising tool for histological analysis of unstained tissues.

BibTeX (Download)

@misc{mnter2020dynamic,
title = {Dynamic contrast in scanning microscopic OCT},
author = {Michael M\"{u}nter and Malte vom Endt and Mario Pieper and Malte Casper and Martin Ahrens and Tabea Kohlfaerber and Ramtin Rahmanzadeh and Peter K\"{o}nig and Gereon H\"{u}ttmann and Hinnerk Schulz-Hildebrandt},
url = {https://arxiv.org/pdf/2003.00006.pdf},
year  = {2020},
date = {2020-03-01},
abstract = {While optical coherence tomography (OCT) provides a resolution down to 1 μm it has difficulties to visualize cellular structures due to a lack of scattering contrast. By evaluating signal fluctuations, a significant contrast enhancement was demonstrated using time-domain full-field OCT (FF-OCT), which makes cellular and subcellular structures visible. The putative cause of the dynamic OCT signal is ATP-dependent motion of cellular structures in a sub- micrometer range, which provides histology-like contrast. Here we demonstrate dynamic contrast with a scanning frequency-domain OCT (FD-OCT). Given the inherent sectional imaging geometry, scanning FD-OCT provides depth-resolved images across tissue layers, a perspective known from histopathology, much faster and more efficiently than FF-OCT. Both, shorter acquisition times and tomographic depth-sectioning reduce the sensitivity of dynamic contrast for bulk tissue motion artifacts and simplify their correction in post-processing. The implementation of dynamic contrast makes microscopic FD-OCT a promising tool for histological analysis of unstained tissues.},
howpublished = {ARXIV:Preprint},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}